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Statistical inference

To develop probabilistic models from
observational data, we need to esti-
mate the statistical parameters and
probabilities of the distributions.

• In most applications, the true
population is unknown

• Estimates are obtained from
representative samples
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Role of sampling in statistical inference
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Statistical inference

This module (M4) covers concepts in statistical inference:

• Point estimates and sampling variability (M4a; today)

• Confidence intervals for a proportion (M4b)

• Hypothesis testing for a proportion (M4c)

Jimi Oke (UMass Amherst) CEE 260/MIE 273 M4a: Point Estimates and Sampling Variability October 21, 2025 5 / 27



Statistical inference Point estimation Method of moments Variability and CLT Outlook

Point estimates

Definition

A point estimate of a parameter θ (e.g. proportion p, or mean value µ) is a
single number that can be regarded as a sensible value for θ and is obtained by
computing the value of a suitable statistic (e.g. sample mean, sample standard
deviation, etc) from given sample data. The selected statistic Θ̂ is the point
estimator of θ.
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Figure: Sample histogram with point estimate θ̂ showing the center of the distribution
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Point estimates (cont.)

Notation

• Θ̂: point estimator (pronounced theta hat)

• θ̂: point estimate
θ̂ = θ + estimation error (1)

• A hat can be placed on the actual statistic estimated for clarity, e.g.

p̂ = X

Properties of point estimators

Desired properties of a point estimator:

• Unbiasedness

• Consistency

• Efficiency

• Sufficiency
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Desired properties of point estimators: unbiasedness

An estimator is unbiased if its expected value is equal to the true value of the
parameter it estimates:

E(θ̂) = θ (if θ̂ is unbiased) (2)

Thus, the bias is given by:
Biasθ̂ = E(θ̂)− θ (3)
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Figure: Comparison of biased and unbiased estimators
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Desired properties of point estimators: consistency

An estimator is consistent if θ̂ → θ as n → ∞,i.e. the estimation error should
decrease with increasing sample size.
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Figure: As sample size increases, the sampling distribution becomes more concentrated around
the true parameter
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Desired properties of point estimators (cont.)

Efficiency

The efficiency of an estimator is
defined by how small its variance is.

Sufficiency

A sufficient estimator uses all the
relevant information in a given
sample in its estimation.

In many applications, efficiency (low
variance) and unbiasedness (low bias)
are the most important properties of
an estimator.

Image source: https://tex.

stackexchange.com/a/307285/2269
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Sample moments

• The moments of a random variable are its key descriptors.

• Parameters of the distribution of a random variable are usually related to the
first and second moments (mean and variance, respectively)

Given a sample x1, x2, . . . , xn, the point estimates of the population mean µ and
variance σ2 are:

Sample mean

x =
1

n

n∑
i=1

xi (4)

Sample variance

s2 =
1

n − 1

n∑
i=1

(xi − x)2 (5)
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Unbiasedness of s2

From Equation (??), you can show (as an exercise) that:

s2 =
1

n − 1

[
n∑

i=1

x2i − nx2

]
(6)

You may be wondering why the sample variance is not just the average of the sum
of squared deviations from the sample mean. But

s2 = E

(
1

n − 1

n∑
i=1

(xi − x)2

)
= σ2 (7)

σ̂2 = E

(
1

n

n∑
i=1

(xi − x)2

)
=

n − 1

n
σ2 (8)

The second estimator is biased and underestimates σ2 by −σ2

n .
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Sample mean and variance

Example 1: Elastic modulus of alloys

The elastic modulus (GPa) of a sample of alloy specimens from a die-casting
process is:

X = 44.2, 43.9, 44.7, 44.2, 44.0, 43.8, 44.6, 43.1

(a) Estimate the population mean using the estimator x (sample mean)

(b) Estimate the population variance using the estimator s2 (sample variance)

(c) Now, estimate the variance replacing the denominator (n − 1) with n in the
estimator s2. What do you notice?
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Sample mean and variance

Example 1: Elastic modulus of alloys (cont.)

X = 44.2, 43.9, 44.7, 44.2, 44.0, 43.8, 44.6, 43.1

(a) µ̂ = x = 1
8

∑8
i=1 xi ≈ 44.063

(b) s2 = 1
7

[∑8
i=1 x

2
i − 8(44.0632)

]
≈ 0.251

(c) Biased estimate of σ2:

σ̂2 = 1
8

[∑8
i=1 x

2
i − 8(44.0632)

]
= 7

8 (0.251) = 0.220

σ̂2 underestimates σ2 by 0.031 squared units.

Jimi Oke (UMass Amherst) CEE 260/MIE 273 M4a: Point Estimates and Sampling Variability October 21, 2025 14 / 27



Statistical inference Point estimation Method of moments Variability and CLT Outlook

Variability of a point estimate

Example 2: Solar energy expansion

Suppose the proportion of American adults who support the expansion of solar
energy is p = 0.88, which is our parameter of interest. Develop a simulation to
investigate how the sample proportion p̂ behaves compared to the true population
proportion p:

(a) Create a set of a large number of entries (e.g. 30,000) where 88% are in
support and 12% are not.

(b) Sample n = 1000 entries without replacement

(c) Plot the histogram of the sampling distribution of p̂

(d) Compute the sample mean xp̂

(e) Compute the standard deviation sp̂ (called the standard error SEp̂).

(f) Investigate what happens as n increases.
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The Central Limit Theorem (CLT)

Let X1,X2, . . . ,Xn be a random sample from a distribution with mean µ and
variance σ2. If n is sufficiently large, then the sample mean X has approximately a
normal distribution with

µX = µ (9)

σ2
X

=
σ2

n
(10)

and the sample total, Sn = X1 + X2 + . . .+ Xn, has approximately a normal
distribution with

µS = nµ (11)

σ2
S = nσ2 (12)

Implications:

• The sum of a large number of random components approaches a
normal/Gaussian distribution

• The product of large number of random components approaches the
lognormal distribution
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Central limit theorem (cont.)

Sample mean

X =
X1 + X2 + · · ·+ Xn

n
(13)

Sum of sample observations

Sn = X1 + X2 + · · ·+ Xn (14)

If n is sufficiently large for any sample:

X ∼ N
(
µ,

σ2

n

)
(15)

Sn ∼ N (nµ, nσ2) (16)

Note that the quantity
√

σ2

n = σ√
n
is also known as the sampling error (SE) or

the standard error of the mean (SEM)
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Sample proportion and the CLT

If the observations in a given sample are a Bernoulli sequence with a constant
proportion (or probability) p, then if n is large, the sample proportion p̂ follows a
normal distribution (according to the CLT):

p̂ ∼ N (µp̂,SE
2
p̂ ) = N

(
p,

p(1− p)

n

)
(17)

where

Sample mean proportion: µp̂ = p

Sampling error/standard error of p̂: SEp̂ =

√
p(1− p)

n
≈
√

p̂(1− p̂)

n

One rule of thumb for determining whether n is large enough is to check that both
np and n(1− p) are ≥ 10 (also known as the success-failure condition).
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Success-failure condition

In the case of a proportion p, the CLT holds only if:

• The observations are independent (i.e. random)

• The sample size n is sufficiently large

The second condition is typically observed via the success-failure condition, i.e.:

np ≥ 10 (18)

n(1− p) ≥ 10 (19)
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CLT application: sample proportion

Example 3: Solar energy expansion (CLT)

Suppose the proportion of American adults who support the expansion of solar
energy is p = 0.88, which is our parameter of interest. If we were to take a poll of
1000 American adults on this topic, the estimate would not be perfect, but how
close might we expect the sample proportion in the poll would be to 88%?

(a) According to the CLT, what is the distribution of p̂?

(b) According to the CLT, what are µp̂ and SEp̂, respectively?
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CLT application: sample proportion (cont.)

Example 3: Solar energy expansion (CLT)

(a) First, we note that the response of each American adult in the entire
population is part of a Bernoulli sequence with p = 0.88. According to the
CLT, the distribution of p̂ (sample proportion) is normal/Gaussian. We can
denote this as:

p̂ ∼ N
(
p,

σ2

n

)
OR N

(
µp,

σ2
p

n

)
(20)

0.84 0.86 0.88 0.9 0.92

15

30

45 p = 0.88

SE = 0.01

p̂ ∼ N(0.88, 0.012)

68% of samples
within ±1SE

By CLT: p̂ ≈ N

(
p,

√
p(1−p)

n

)

Sample Proportion (p̂)

Probability Density
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CLT application: sample proportion (cont.)

Example 3: Solar energy expansion (CLT)

(b) µp̂ denotes the mean estimate of p, which is 0.88 (according to the CLT, the
mean of the sample is the population mean if n is large).
SEp̂ denotes the sampling error, which is the the square root of the variance

of the sample mean:
√
σ2/n. Given that the sample is governed by the

Binomial distribution with σ2 = p(1− p). Thus:

SE 2
p̂ =

σ2

n
=

p(1− p)

n
=

0.88(0.12)

1000

SEp̂ =

√
0.88(0.12)

1000
= 0.01
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CLT application: sample proportion (cont.)

0.83 0.85 0.87 0.88 0.89 0.91 0.930.88

Distribution of Sample Proportion

SE = 0.01
95% CI: [0.86, 0.90]

p − 2SE p + 2SE

p̂

Figure: Sample proportion distribution: most samples fall within ±2SE of the true proportion
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Another application of the CLT

Example 4: Mean batch weight

A certain brand of cement is shipped in batches of 40 bags. Previous records
indicate the weight of a randomly selected bag of this brand has a mean of 2.5 kg
and an SD of 0.1 kg. The exact distribution is unknown.

(a) What is the mean weight of one batch of this brand of cement?

(b) If the shipping company charges an overweight fee if a batch exceeds the
mean batch weight by more than 1 kg, what is the probability that a batch
will be charged?
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Another application of the CLT

Example 4: Mean batch weight (cont.)

Let B be the total weight of one batch.

(a) The mean weight of one batch is thus

µB = 40× 2.5 = 100 kg (21)

(b) By the CLT, B is approximately normal with µB = 100 and
σ2
B = 40(0.1)2.The probability a batch will be charged is:

P(B > 101) = 1− Φ

(
101− 100

0.1
√
40

)
= 1− Φ(1.581)

= 1− 0.9431 ≈ 5.69%
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Summary

• Desired properties of point estimates: unbiasedness and efficiency

• Distribution of sample proportions (or other parameters) is called a sampling
distribution

• When n is sufficiently large and observations are independent, the sample
proportion (or other parameter) follows a normal distribution

• The success-failure condition can be used to determine if n is large enough
for the CLT to hold (for a sample proportion)
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