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Objectives of today’s lecture

Understand and apply the binomial distribution

• PMF

• CDF

• Mean

• Variance

Note about CDF

The median of a distribution is given by the value of X at FX (x) = 0.5.
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Example 1: Engineering majors

40% of the students in a university are MIE majors. If four students (A, B, C, D)
are chosen at random, what is the probability that exactly one student will be an
MIE major?

Solution
In one scenario, student A is an MIE major, while the other 3 are not.

P(A = MIE,B = not,C = not,D = not)

= P(A = MIE)× P(B = not)× P(C = not)× P(D = not)

= 0.4(0.6)(0.6)(0.6) = 0.4(0.63)

= 0.0864

But are these all the scenarios?

No. There are 3 others: each of the students B, C or D could also be the MIE
major. Thus, the total required probability is 4× (0.4)(0.63) = 0.346

Jimi Oke (UMass Amherst) CEE 260/MIE 273 Lecture 3D: Binomial Dist. October 6, 2025 4 / 20



Introduction The Binomial distribution Mean and variance Outlook

Example 1: Engineering majors (cont.)

40% of the students in a university are MIE majors. If four students (A, B, C, D)
are chosen at random, now find the probability that exactly two students will be
MIE majors?

Solution (cont.)

First, we list the scenarios:

• Scenario 1: A = MIE, B = MIE; C ,D = not

• Scenario 2: A = MIE, C = MIE; B,D = not

• Scenario 3: A = MIE, D = MIE; B,C = not

• Scenario 4: B = MIE, C = MIE, A,D = not

• Scenario 5: B = MIE, D = MIE, A,C = not

• Scenario 6: C = MIE, D = MIE, A,B = not

The number of scenarios =
(
4
2

)
= 4!

2!2! = 6.
Each scenario has the same probability: (0.4)(0.4)(0.6)(0.6) = 0.058
The probability of having 2 MIE majors in a random group of 4 students is:(

4

2

)
(0.4)2(0.6)2 = 6× (0.058) = 0.346
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Bernoulli sequence

The Bernoulli sequence describes events which may either occur or not occur in N
successive trials. Key assumptions:

1 Each trial has only two possibilities: occurrence or nonoccurrence

2 The probability of occurrence p of the event in each trial is constant

3 The trials are statistically independent

Examples of Bernoulli sequences in engineering
• Operational condition of equipment during a project

• Success or failure of quality control test for manufactured items

• Damage to a building in annual seismic events

The Bernoulli sequence is the basis for the binomial distribution
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Binomial distribution

Given a Bernoulli sequence with X random number of occurrences of an event, n
trials and p the probability of occurrence of each event.

Definition

The binomial PMF for a random variable X ∼ Bin(n, p) is given by:

P(X = x) =

(
n

x

)
px(1− p)n−x x = 0, 1, 2, . . . , n (1)

where n and p are the parameters and
(
n
x

)
= n!

x!(n−x)! is the binomial coefficient.

• The symbol “∼” is shorthand for “distributed as”

• Bin(n, p) is the typical notation for a binomial distribution
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PMF of a binomial distribution
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Example 2: Road graders

Five road graders are used in the construc-
tion of a highway project. The probabil-
ity that a grader will malfunction within
900hrs is 0.0594. Assuming statistical in-
dependence among the conditions of the
machines, evaluate the probability that
two of the five machines will malfunction
in less than 900hrs of operation.

Parameters: n = 5, x = 2, p = 0.0594.

P(X = x) =

(
n

x

)
px(1− p)n−x

P(X = 2) =

(
5

2

)
0.05942(0.9406)5−2

= 10(0.0035)(0.832)

= 0.029
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CDF of a binomial distribution

Definition
The CDF of binomially distributed random variable X is:

FX (x) = P(X ≤ x) =
x∑

k=0

(
n

k

)
pk(1− p)n−k (2)
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CDF of a binomial distribution (visualization)
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Example 3: Road graders revisited

5 road graders are used in the construction
of a highway project. The probability that
a grader will malfunction within 900hrs
is 0.0594. Assuming statistical indepen-
dence among the conditions of the ma-
chines, evaluate the prob. no more than
two of the 5 machines will malfunction
within 900hrs of operation.

P(X ≤ x) = FX (2) =
2∑

k=0

(
n

k

)
pk(1− p)n−k , n = 5, x = 2, p = 0.0594

P(X ≤ 2) =

(
5

0

)
0.05940(0.9406)5 +

(
5

1

)
0.05941(0.9406)4

+

(
5

2

)
0.05942(0.9406)3

= (1)(1)(0.9406)5 + (5)(0.0594)(0.9406)5 + (10)(0.0594)2(0.9406)3

= 0.998
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Mean of a binomial distribution

Let X ∼ Bin(n, p):

µX = E(X ) = np (3)

Proof.
Let Xi = 1 if an event occurs on the i-th trial in a Bernoulli sequence. Then the
number X of occurrences is: X =

∑n
i=1 Xi .

The expectation is linear in X , thus:

E(X ) = E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi ) (4)

Since E(Xi ) = p, then:

E(X ) =
n∑

i=1

E(Xi ) =
n∑

i=1

p = np (5)

You can also derive the mean from first principles using the binomial theorem.
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Variance of a binomial distribution

Let X ∼ Bin(n, p). Then

V(X ) = np(1− p) = npq (6)

where q = 1− p.

Sketch of proof

You can show that variance of a single trial
V(Xi ) = E(X 2

i )− E(Xi )
2 = p − p2 = p(1− p) = pq. And V(X ) follows.
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Example 1: Revisited

40% of the students in a university are engineering majors. The probability that
any subset of 4 randomly selected students will be MIE majors is governed by the
binomial distribution.

(a) What is the mean of the binomial distribution governing this set of outcomes?

(b) What is the variance?

(c) Find the probability that 2 of 4 randomly selected students will be MIE majors.

(d) Find the probability that at least 3 randomly selected students will be MIE
majors.
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Example 1: Revisited (cont.)

(a) n = 4; p = 0.4.Thus, the mean is given by E(X ) = np = 4(0.4) = 1.6 .

(b) The variance is given by V(X ) = npq

= np(1− p)= 4(0.4)(1− 0.4) = 4(0.4)(0.6) = 0.96 .

(c) Find the probability that 2 of 4 randomly selected students will be MIE majors.

P(X = 2) =

(
n

x

)
px(1− p)n−x =

(
4

2

)
(0.4)2(0.6)4−2

= 6(0.16)(0.36)

= 0.346

In Python:

from scipy.stats import binom
n = 4
p = 0.4
x = 2
prob = binom.pmf(x, n, p)
print(prob)
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Example 1: Revisited (cont.)

(d) Find the probability that at least 3 randomly selected students will be MIE
majors.

We want to find P(X ≥ 3) = 1− P(X ≤ 2) = 1− FX (2) In Python:

from scipy.stats import binom
n = 4
p = 0.4
x = 3
prob = 1 − binom.cdf(x−1, n, p) # P(X >= 3)

print(prob)
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Relationship between binomial and normal distributions

Consider the distribution B(n = 20, p = 0.6).
We see that it can be approximated by N (µ = np, σ =

√
npq), where q = 1− p.
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Relationship between binomial and normal (cont.)

If a binomial PMF is not too skewed, then X ∼ Bin(n, p) is approximately
normally distributed with µ = np and σ =

√
npq.

To check for normality, we can use the following rules of thumb:

np ≥ 10 (7)

nq ≥ 10 (8)

Thus:

P(X ≤ x) ≈ Φ

(
x + 0.5− np

√
npq

)
np ≥ 10; nq ≥ 10 (9)

and

P(X ≥ x) ≈ 1− Φ

(
x − 0.5− np

√
npq

)
np ≥ 10; nq ≥ 10 (10)

where Φ(z) is the CDF of the standard normal distribution and ±0.5 is the
continuity correction.
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Recap: Binomial distribution

• Mean: µX = E (X ) = np

• Variance: Var(X ) = npq = np(1− p)

• PMF: P(X = x) =
(
n
x

)
px(1− p)n−x

• CDF: FX (x) = P(X ≤ x) =
∑x

k=0

(
n
k

)
pk(1− p)n−k

Reading
• Open Intro Statistics: Section 4.3 (Binomial distribution)
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